Minus domination in regular graphs
نویسندگان
چکیده
A three-valued function f defined on the vertices of a graph G = (V,E), f : V , ( 1 , 0 , 1), is a minus dominating function if the sum of its function values over any closed neighborhood is at least one. That is, for every v E V, f(N[v])>~ 1, where N[v] consists of v and every vertex adjacent to v. The weight of a minus dominating function is f ( V ) = ~ f (v) , over all vertices v E V. The minus domination number of a graph G, denoted 7-(G), equals the minimum weight of a minus dominating function of G. In this note, we establish a sharp lower bound on 7(G) for regular graphs G.
منابع مشابه
Twin minus domination in directed graphs
Let $D=(V,A)$ be a finite simple directed graph. A function$f:Vlongrightarrow {-1,0,1}$ is called a twin minus dominatingfunction (TMDF) if $f(N^-[v])ge 1$ and $f(N^+[v])ge 1$ for eachvertex $vin V$. The twin minus domination number of $D$ is$gamma_{-}^*(D)=min{w(f)mid f mbox{ is a TMDF of } D}$. Inthis paper, we initiate the study of twin minus domination numbersin digraphs and present some lo...
متن کاملThe minus k-domination numbers in graphs
For any integer , a minus k-dominating function is afunction f : V (G) {-1,0, 1} satisfying w) for every vertex v, where N(v) ={u V(G) | uv E(G)} and N[v] =N(v)cup {v}. The minimum of the values of v), taken over all minusk-dominating functions f, is called the minus k-dominationnumber and is denoted by $gamma_k^-(G)$ . In this paper, we introduce the study of minu...
متن کاملUpper minus Total Domination Number of 6-regular Graph
Let Γ−t (G) be upper minus total domination number of G. In this paper, We establish an upper bound of the upper minus total domination number of a 6-regular graph G and characterize the extremal graphs attaining the bound. Thus, we partially answer an open problem by Yan, Yang and Shan. AMS Subject Classification: 05C69
متن کاملUpper minus total domination in small-degree regular graphs
A function f :V (G) → {−1, 0, 1} defined on the vertices of a graph G is a minus total dominating function (MTDF) if the sum of its function values over any open neighborhood is at least one. An MTDF f is minimal if there does not exist an MTDF g:V (G) → {−1, 0, 1}, f = g, for which g(v) f (v) for every v ∈ V (G). The weight of an MTDF is the sum of its function values over all vertices. The mi...
متن کاملDomination and Signed Domination Number of Cayley Graphs
In this paper, we investigate domination number as well as signed domination numbers of Cay(G : S) for all cyclic group G of order n, where n in {p^m; pq} and S = { a^i : i in B(1; n)}. We also introduce some families of connected regular graphs gamma such that gamma_S(Gamma) in {2,3,4,5 }.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 149 شماره
صفحات -
تاریخ انتشار 1996